
Lecture 19

Partial differential equations

• The Schrödinger equation

• More than 1+1.

• Operator splitting.

• Elliptic equations: Fourier methods.

• Elliptic equations: relaxation methods.



The Schrödinger equation:

We have driven home the message that accuracy is not everything,

one wants stability as well. In the previous examples we also noted 

that even that is not enough: one wanted to be able to take appropriately

large timesteps. In many physical applications there are further 

additional restrictions that need to be met. An example of this is 

Schrödinger’s equation.

This is a parabolic equation, so we could try one of the schemes we

discussed before, for instance, an implicit scheme for stability reasons,



A von Neumann analysis of this scheme seems to give the green light,

But there is a problem. The scheme is not unitary. That is, we know

that Schroedinger’s equation can be written as,

with

Which can be formally integrated as, 

This implies that if one starts with initial data such that,

This condition is preserved in time.



What is happening is that the schemes we write are tantamount to

(say, for an explicit FTCS unstable scheme),

With H appropriately discretized as a centered difference. For the

implicit scheme one has,

The evolution operator so constructed is first order accurate in time

but is not unitary. The correct way to handle this is to use Cayley’s 

representation of the evolution operator,

Or, 

Which is both second order accurate and unitary.



More than 1+1:

Our discussion was confined for simplicity reasons to 1+1 dimensional

equations. The techniques we discussed are, however, of more general

applicability. For instance, von Neumann stability can be tested in any

number of dimensions, one just assumes a single amplitude that grows

with n and harmonic dependence (with different k’s) in the spatial 

coordinates.

The computational cost of going to higher dimensions grows 

dramatically. Stability of a code, however, can in general be assessed

with very small grids. Sometimes additional instabilities can appear

when the grid is enlarged, but instabilities seen for smaller grids never

go away when the grid is enlarged (unless there are special features

that justify this). Some misguided people think “my code will stabilize

with more points” confusing accuracy and stability.



Example: Lax method for a flux conservative equation in 2D

Same ∆ in both 

for simplicity.
Lax scheme:



Let’s study stability in the particular case

Mode:  

More generally:

Maximum

propagation

speed.



Diffusion equation in multidimensions:

Crank-Nicholson:

Problem: matrix is not tridiagonal anymore. It is still sparse, though.



Alternative approach: divide your stepsize in time into two stepsizes

of half the length and update each dimension in each substep:

Each substep now only requires solving a tridiagonal system.

This is a particular example of a more general technique known

as Operator Splitting.



Operator splitting: Sometimes one is faced with equations like

the advection-diffusion equation,

Where one knows different

schemes for treating the two

terms in the RHS. 

One possibility is to combine these schemes in time: take a step

to the midpoint assuming the RHS has only the first term. Then take

another step to the final point assuming only the second term is 

present. 

The advantage of this technique is that we can use discretizations

tailored to each term (for instance explicit for the advection term,

Crank-Nicholson for the diffusion term). It is clear that the resulting

scheme reproduces the equation in the continuum limit.

Details will matter. This approach sometimes works. Of course no

general statements can be made about it.



Elliptic equations: boundary value problems

Fourier methods:

We expand both u and rho in multidimensional Fourier series. We 

will discuss routines for doing Fourier tranform later in the course,

We now consider the discretized version of the above equation,

Or,



We get,

Or,

The general strategy for solution is therefore: 

a) Compute the Fourier transform of the source rho.

b) Use the above equation to find hat u.

c) Find the desired solution via inverse Fourier transform.

However, we need to take into account some details. In particular, 

boundary conditions. Careful examination shows that the solution 

we just constructed satisfies periodic boundary conditions.



If one is faced with a Dirichlet boundary condition u=0 at the boundary,

one would use a sine Fourier expansion,

And similarly for rho and for the inverse transform.

If one has u=0 on all boundaries except one where one has u=f(y) at

x=J∆, one has to take the above solution for the u=0 problem in all 

boundaries and add a solution of the homogeneous equation that 

satisfies the boundary condition,



Another way of viewing the boundary conditions is to encode them

in the right hand side of the equation. 

We formally write for the solution

Where u’=0 on the boundary and uB=0 everywhere except on the

boundary.

The equation then becomes

And discretized,

The uB terms vanish everywhere except (in the example before)

at j=J-1, where,

So in matrix form, the linear equation to be handled is exactly the

same as before with the exception of one row.



Relaxation methods:

We already discussed relaxation methods in the context of two-point

boundary value problems. The methods consisted in finding a scheme

that updated the values of the function across the grid approximating

in each iteration the desired solution better and better.

There is an alternative, more “physical” way to think of relaxation.

Consider an elliptic problem,

Now consider the associated diffusive equation, 

As the solution of the parabolic equation reaches its asymptotic

value, the time derivatives vanish and one is effectively solving the

elliptic equation we started with!

We can therefore just translate the machinery we developed for 

diffusive IVPs to construct relaxation algorithms for elliptic problems!



Let us consider as example the Poisson equation,

And try an FTCS scheme,

Recall that FTCS was stable only if 

(we derived this in 1+1 dimensions, in 2+1 dimensions the RHS is 1/4)

Taking the largest possible timestep, we get

This equation has a simple interpretation: the solution is given by

the average of the four nearest neighbors (plus a source term). It is 

a classical method called Jabobi method.



Jacobi’s method might be classical but is not very useful. We learnt 

earlier that FTCS works for diffusion equations in the sense of not 

blowing up, but that the stepsizes required for stability were too small.

Here we have a reflection of the same problem: Jacobi’s method 

converges, but  too slowly.

Another classical (and also useless in practice) method is the 

Gauss-Seidel method. It is the same as Jacobi’s method but instead

of performing the average with the values at the previous “time” we

use new values as they become available, that is,

(if we are incrementing j for fixed l).

To analyze a bit the rates of convergence (a full discussion exceeds

the scope of this course) we will analyze the matrix equations resulting

from both methods.



Summary

• Schrödinger equation and other equations

with conservation laws may require special

discretizations.

• Going to more than 1D is in principle 

straightforward, costly in practice.

• For elliptical equations one uses Fourier 

methods or relaxation techniques.


