
"Monday, Sept. 10 ${ }^{\text {th }}, 2012$:
"--Duality and then Ch. 5
--Experimental Rydberg Series.
--Bohr Model of H atom
--Shortcomings of Bohr Model
--Hydrogen-Like lons $-\mathrm{He}^{+1}$ spectrum
--Moseley diagram.
--Electron Loss Spectroscopy
---Franck-Hertz Experiment

- Wednesday:
--meet in 106 and then go to 335 for computer exercise

Example for Term paper: Plasmonics

1. Find a general review article: Scientific American, Physics Today, web.
2. Write the introduction to the paper about the basic physics. In this case what is a plasmon? How can you control the plasmon energy by the size of the nanoparticle? What materials are good for plasmonics and why?
3. Pick one special area to describe in detail. For example, with plasmonics it could be quantum computing, or medical physics? If you are interested in the medical applications see the web site of
 Naomi Halas from Rice.
4. The paper should have the format of a Physical Review Letter-4 pages, two columns, 4 figures and full references.

Particle-Wave Duality

EM waves can act as waves and as particles: The Compton Experiment showed this.

The wave nature is characterized by
$y(x, t)=A \sin (k x-\omega t)$
$\lambda \rightarrow$ wavelength
$k=\frac{2 \pi}{\lambda} \rightarrow$ wave number
$\mathrm{c} \rightarrow$ the speed of light
$\mathrm{T} \rightarrow$ period
$\omega=\frac{2 \pi}{T} \rightarrow$ angular frequency
Particles have wave nature: De Broglie

$$
\begin{aligned}
& E=h f=\hbar \omega \\
& p=\frac{h}{\lambda}=\hbar k
\end{aligned}
$$

Electron Diffraction

The particle nature is characterized by
$p \rightarrow$ momentum
$E \rightarrow$ Energy
$p c=E$
$E=h f=\hbar \omega=$
$P=\frac{E}{c}=\frac{h f}{c}=\frac{h}{c T}=\frac{h}{\lambda}$

Heisenberg Uncertainty Principle

You can't simultaneously measure the position and momentum.

You can't simultaneously measure the energy and the time.

$\Delta t \Delta \omega \approx \frac{1}{2}$
$\Delta t \Delta E \approx \frac{\hbar}{2}$

Werner Heisenberg (1901-1976) German

1932 Nobel Prize "for the creation of Quantum mechanics, the application of which has, inter alia, led to the discovery of the allotropic forms of hydrogen"

Particle-Wave Duality

1911 Solvay Conference, held in Brussels from 29 October to 4 November. There were twenty-two physicists from Holland, France, England, Germany, Austria, and Denmark being convened to discuss 'current questions concerning the molecular and kinetic theories'. It was the first international meeting devoted to a specific agenda in contemporary physics: the quantum.

Planck and Einstein were among the eight asked to prepare reports on a particular topic. To be written in French, German, or English they were to be sent out to the participants before the meeting and serve as the starting point for discussion during the planned sessions. Planck would discuss his blackbody radiation theory, while Einstein had been assigned his quantum theory of specific heat. Accorded the honor of giving the final talk, there was no room on the proposed agenda for a discussion of his light-quanta - better known these days as photons.
http://manjitkumar-reviewsarticles.blogspot.com/2011/12/solvay-1911.htm|

Bohr's famous response was. 'Einstein, stop telling God what to do'.

Particle-Wave Duality

1927 Solvay Conference, held in Belgium, was attended by the world's most notable physicist to discuss the new quantum theory.

Look at Steven Hawking's lecture: http://www.hawking.org.uk/does-god-play-dice.html

Einstein's thought experiments: The Einstein-Bohr Debates, Bell inequality

Could be a good term paper!

Ch. 5: Quantization of Atomic Energy Levels Atomic Spectra

Atomic Spectra: Hydrogen

Experimentalist had measured very carefully the emission and absorption spectra of H . They found an empirical formula to describe their observations.

In 1885 Balmer described the visible spectrum: Balmer Series

Atomic Spectra: Experimental picture

$$
\begin{aligned}
& E=h f=\frac{h c}{\lambda} \\
& \Delta E\left(n, n^{\prime}\right)=h c R\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}\right)
\end{aligned}
$$

Rydberg Energy
$E_{R}=h c R=13.6 \mathrm{eV}$

Ionization potential n' $=1$ to $\mathrm{n}=\infty$
$I=13.6\left(\frac{1}{1}-0\right)=13.6 \mathrm{ev}$
Define
$E_{n}=-\frac{E_{R}}{n^{2}}$

Computer Exercise.

Atomic Spectra: Classical vs. Rydberg

H spectra, notice that most of the lines are not in the visible!

Bohr Model: 1913

Rutherford's model of the atom appeared in 1911.
The nucleus is fm is size and the atom in nm in size. Mostly free space.

Rutherford was aware that his model created terrible problems. Unlike planets revolving around the sun electrons moving around a proton MUST radiate EM
 radiation and consequently collapse into the nucleus.

Bohr in 1913 solved this problem by a
 simple postulate. Electrons can only exist is quantized orbits, called stationary orbits or stationary states.

Bohr did not explain why the electron does not radiate-he just said they don't.

Bohr Model: 1913

Bohr immediately realized that he had a way to explain the emission and absorption spectra. His atom had quantized energy states, $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}, \ldots .$. . Light could be emitted or absorbed when a transition occurred.

$$
\begin{aligned}
& E_{n} \rightarrow E_{n^{\prime}} \\
& \text { If } E_{n}>E_{n^{\prime}} \text { Emission } \\
& \text { If } E_{n}<E_{n^{\prime}} \text { Absorption }
\end{aligned}
$$

Bohr's Model: The angular momentum L of each quantum state is quantized.

$$
\begin{aligned}
& L_{n}=n \hbar=n \frac{h}{2 \pi} \\
& \text { Classically } \quad L=m v r
\end{aligned}
$$

Classical model

$$
\begin{aligned}
& F=\frac{k e^{2}}{r^{2}}=m a \\
& m \frac{v^{2}}{r}=\frac{k e^{2}}{r^{2}} \\
& \text { centripetal acc. }
\end{aligned}
$$

$$
\begin{aligned}
& E_{K}=\frac{m v^{2}}{2}=\frac{k e^{2}}{2 r} \\
& U=-\frac{k e^{2}}{r} \\
& E_{K}=-\frac{U}{2}
\end{aligned}
$$

Bohr Quantization Condition

$$
\begin{aligned}
& L_{n}=n \hbar=n \frac{h}{2 \pi} \\
& \text { Classically } \mathrm{L}=\mathrm{mvr}
\end{aligned}
$$

$$
m r v=n \hbar
$$

$$
\text { and } m v^{2}=\frac{k e^{2}}{r} \quad r_{n}=\frac{n^{2} \hbar^{2}}{k e^{2} m}=n^{2} a_{B}
$$

$$
m\left(\frac{n \hbar}{m r}\right)^{2}=\frac{k e^{2}}{r} \quad a_{B}=0.0529 \mathrm{~nm}: \text { Bohr Radius }
$$

$$
E_{n}=-\frac{k e^{2}}{r_{n}}=-\frac{k e^{2}}{2 a_{B}} \frac{1}{n^{2}}(\text { n } 1,2,3, \ldots)
$$

$$
E_{R}=\frac{k e^{2}}{2 a_{B}}=\frac{m\left(k e^{2}\right)^{2}}{2 \hbar^{2}}=13.6 \mathrm{eV} \quad \text { (Rydberg energy) }
$$

$$
E_{n}=-\frac{E_{R}}{n^{2}}
$$

$$
\begin{aligned}
& \text { Velocity } \\
& v_{n}=\frac{n \hbar}{m r_{n}} \\
& v_{n}=\frac{n \hbar\left(m k e^{2}\right)}{m\left(n^{2} \hbar^{2}\right)}=\frac{k e^{2}}{n \hbar} \\
& v_{n}=\frac{2.19 \times 10^{6} \mathrm{~m} / \mathrm{s}}{n} \\
& \hline
\end{aligned}
$$

Bohr: H spectra

$$
\Delta E=h f=E_{R}\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}\right): \mathrm{n}^{\prime}<\mathrm{n}
$$

Emission

$f=\frac{c}{\lambda}=\frac{E_{R}}{h}\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}\right)$
$\lambda\left(n, n^{\prime}\right)=\frac{c h}{E_{R}}\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}\right)^{-1}=91.2 n m\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}\right)^{-1}$

Bohr Model: What did he really do?

In 1926 De Broglie described the wave nature of a particle. He started with the Bohr quantized orbits. He said that if the electron is in a stable orbit than $2 \pi r=n \lambda$.

Putting this into Bohr's quantization gives the relationship for the wavelength of a particle.
Bohr explained this using the Correspondence Principle.
"In the limit of large orbits and large energies, quantum calculations must agree with classical calculation."

Another way of stating the Correspondence Principle. "In the region of very large quantum numbers (n is this case) quantum and classical calculations must yield the same results."

$$
L=m v r=n \hbar
$$

So $p=m v=\frac{n \hbar}{r}=\frac{n \hbar}{\frac{n \lambda}{2 \pi}}=\frac{h}{\lambda}$

Bohr Model: Correspondence Principle

Look at a transition from n to $n-1$ for large n

$$
\begin{aligned}
& h f(n \rightarrow n-1)=\frac{m\left(k e^{2}\right)^{2}}{2 \hbar^{2}}\left(\frac{1}{(n-1)^{2}}-\frac{1}{n^{2}}\right)=\frac{m\left(k e^{2}\right)^{2}}{2 \hbar^{2}}\left(\frac{n^{2}-(n-1)^{2}}{n^{2}(n-1)^{2}}\right) \\
& f(n \rightarrow n-1)=\frac{c}{\lambda}=\frac{m\left(k e^{2}\right)^{2}}{4 \pi \hbar^{3}}\left(\frac{2 n-1}{n^{2}(n-1)^{2}}\right) \approx \frac{m\left(k e^{2}\right)^{2}}{2 \pi \hbar^{3} n^{3}}
\end{aligned}
$$

Now look at the classical definition of $\mathrm{f}: \mathrm{f}=\frac{v}{2 \pi r}$

Lets use our quantized definitions for r and v

$$
r=\frac{n^{2} \hbar^{2}}{m k e^{2}} \text { and } v=\frac{n \hbar}{m r}
$$

$$
\begin{aligned}
& f=\frac{v}{2 \pi r}=\frac{\left(\frac{n \hbar}{m r}\right)}{2 \pi r} \\
& f=\frac{n \hbar}{2 \pi m r^{2}}=\frac{n \hbar}{2 \pi m\left(\frac{n^{2} \hbar^{2}}{m k e^{2}}\right)^{2}}=\frac{m\left(k e^{2}\right)^{2}}{2 \pi(n \hbar)^{3}}
\end{aligned}
$$

Bohr Model: Real Numbers for H

For a hydrogen atom, use the Bohr model to calculate the following.
(a) The orbit radius as a function of n.
(b) The velocity (can we use non-relativistic equations)?
(c) The angular momentum.
(d) The period of the orbit.
(e) The kinetic energy.
(f) The potential energy.
(g) The total energy.

Bohr Model: Real Numbers for H

For a hydrogen atom, use the Bohr model to calculate the following.
(a) The orbit radius as a function of n.
(b) The velocity, can we use non-relativistic equations?
(c) The angular momentum.
(d) The period of the orbit..
(a) The radius vs n.

$$
r_{n}=\frac{n^{2} \hbar^{2}}{k e^{2} m}
$$

The radius vs n .

UNITS
$\hbar=6.58 \times 10^{-16} \mathrm{eV} \cdot \mathrm{s}$
$\hbar c=197 \mathrm{eV} \cdot \mathrm{nm}$
$k e^{2}=1.44 \mathrm{eV} \cdot \mathrm{nm}$
$\frac{k e^{2}}{\hbar c}=\frac{1}{137}$ Fine-structure constant
$m c^{2}=0.511 \mathrm{MeV}$

(b) The velocity vs n.

$$
v_{n}=\frac{n \hbar}{m r_{n}}=\frac{k e^{2}}{n \hbar}
$$

$$
r_{n}=\frac{n^{2}(\hbar c)^{2}}{k e^{2} m c^{2}}=\frac{n^{2}(137) 197 \mathrm{eV} \cdot \mathrm{~nm}}{0.511 \times 10^{6} \mathrm{eV}}=n^{2} 0.5282 \mathrm{~nm}
$$

The velocity: $v_{n}=\frac{k e^{2}}{n \hbar}=\frac{k e^{2} c}{n \hbar c}=\frac{(1.44 \mathrm{eV} \cdot \mathrm{nm}) c}{n(197 \mathrm{eV} \cdot \mathrm{nm})}=0.0073 \frac{c}{n}$
(c) $L_{n}=n \hbar$

$$
L_{n}=n \hbar=n\left(6.58 \times 10^{-16} \mathrm{eV} \cdot \mathrm{~s}\right): \quad L_{n} c=n \hbar c=n(197 \mathrm{eV} \cdot \mathrm{~nm})
$$

(d) $T=\frac{2 \pi r_{n}}{v_{n}}=\frac{2 \pi n^{3} \hbar^{3}}{m\left(k e^{2}\right)^{2}}$

$$
T=\frac{2 \pi n^{3} \hbar}{\left(m c^{2}\right)}\left(\frac{\hbar c}{k e^{2}}\right)^{2}=\frac{2 \pi n^{3}\left(6.58 \times 10^{-16} \mathrm{eV} \cdot \mathrm{~s}\right)(137)^{2}}{\left(0.511 \times 10^{6} \mathrm{eV}\right)}=n^{3}\left(1.52 \times 10^{-16} \mathrm{~s}\right)
$$

Bohr Model: Real Numbers for H

For a hydrogen atom, use the Bohr model to calculate the following.
(a) The orbit radius as a function of n.
(b) The velocity, can we use non-relativistic equations?
(c) The angular momentum.
(d) The period of the orbit.
(e) The kinetic energy.
(f) The potential energy.
(g) The total energy.

UNITS
$\hbar=6.58 \times 10^{-16} \mathrm{eV} \cdot \mathrm{s}$
$\hbar c=197 \mathrm{eV} \cdot \mathrm{nm}$
$k e^{2}=1.44 \mathrm{eV} \cdot \mathrm{nm}$
$\frac{k e^{2}}{\hbar c}=\frac{1}{137}$ Fine-structure constant
$m c^{2}=0.511 \mathrm{MeV}$

(e) Kinetic energy $=m v_{n}^{2} / 2$
$K_{n}=\frac{m}{2}\left(\frac{k e^{2}}{n \hbar}\right)^{2} \quad K_{n}=\frac{m c^{2}}{2 n^{2}}\left(\frac{k e^{2}}{\hbar c}\right)^{2}=\frac{\left(0.511 \times 10^{6} \mathrm{eV}\right)}{2 n^{2}(137)^{2}}=\frac{13.6 \mathrm{eV}}{n^{2}}$
(f) Potential Energy
$U_{n}=-\frac{k e^{2}}{r_{n}}=-\frac{m\left(k e^{2}\right)^{2}}{n^{2}(\hbar)^{2}}$

$$
U_{n}=-\frac{m c^{2}\left(k e^{2}\right)^{2}}{n^{2}(\hbar c)^{2}}=\frac{-0.511 \times 10^{6} \mathrm{eV}}{n^{2}(137)^{2}}=-\frac{27.2 \mathrm{eV}}{n^{2}}(\text { Rydberg })
$$

(g) Total energy $=K+U=-\frac{m\left(k e^{2}\right)^{2}}{2 n^{2} \hbar^{2}} \quad E=K+U=-\frac{m c^{2}\left(k e^{2}\right)^{2}}{2 n^{2}(\hbar c)^{2}}=-\frac{13.6 e \mathrm{~V}}{n^{2}}$

Bohr Model: Real Numbers for H-Check

For a hydrogen atom, use the Bohr model to calculate the following.
(a) The orbit radius as a function of n.
(b) The velocity, can we use non-relativistic equations?
(c) The angular momentum.
(d) The period of the orbit..

$$
\begin{array}{ll}
r_{n}=\frac{n^{2} \hbar^{2}}{k e^{2} m} & \left.\begin{array}{l}
\text { Lets do a check. } \\
v_{n}=\frac{n \hbar}{m r_{n}}=\frac{k e^{2}}{n \hbar} \\
T=\frac{2 \pi n^{3} \hbar^{3}}{m\left(k e^{2}\right)^{2}}
\end{array} \begin{array}{l}
\frac{k e^{2}}{\hbar c}= \\
m c^{2} \\
\left(\frac{k e^{2}}{n \hbar}\right)
\end{array}\right)\left(\frac{2 \pi n^{3} \hbar^{3}}{m\left(k e^{2}\right)^{2}}\right)=2 \pi r_{n}\left(\frac{n^{2} \hbar^{2}}{k e^{2} m}\right) \\
\left(\frac{1}{n \hbar}\right)\left(\frac{n^{3} \hbar^{3}}{m}\right)=\left(\frac{n^{2} \hbar^{2}}{m}\right) \\
1=1 \text { QED }
\end{array}
$$

Bohr Model: Shortcomings

1) Bohr did not believe in photons, so he stuck to a classical picture of excitation.
2) The angular momentum of the true quantum ground state is $\mathrm{L}=0$, not $\mathrm{L}=\hbar$. There were attempts by Sommerfeld to fix this-elliptical orbits with no area, but experiment would show the ground state to be spherical in shape.
3) The Bohr model could not determine the intensity of a given line in the spectra.
4) The Bohr model has real trouble with larger atoms.
5) The Bohr model can't explain the fine structure you see in the spectra, like the Zeeman Effect..
6) The Bohr model violates the uncertainty principle.

Bohr Model: Refinements

1) Elliptical orbits. Bohr-Sommerfeld Model. $\int_{0}^{T} p_{r} d q_{r}=n h$
2) Use reduced mass. $m_{r}=\frac{m_{e} m_{p}}{m_{e}+m_{p}}=m_{e} \frac{1}{1+m_{e} / m_{p}}$

Calculate the difference in the the wavelength for the first Balmer line when the reduced mass is used.

[^0]
[^0]: Calculate the quantized energies, velocities, radii for positronium.

