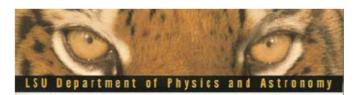
Physics 2101 Section 6 Oct. 11th: Ch. 11

Announcement:

- Exam#2 (Oct. 16th)
- Chapters 9-11
- The same locations
- 1.0 h (6-7pm) Lockett 10
- 1.5 h (5:30-7pm) Nicholson 109
- 2.0 h (5:30-7:30pm) Nicholson 119
- Review: Monday (10/15)

7-9 pm, Nicholson 130

http://www.phys.lsu.edu/classes/fall2012/phys2101-6/

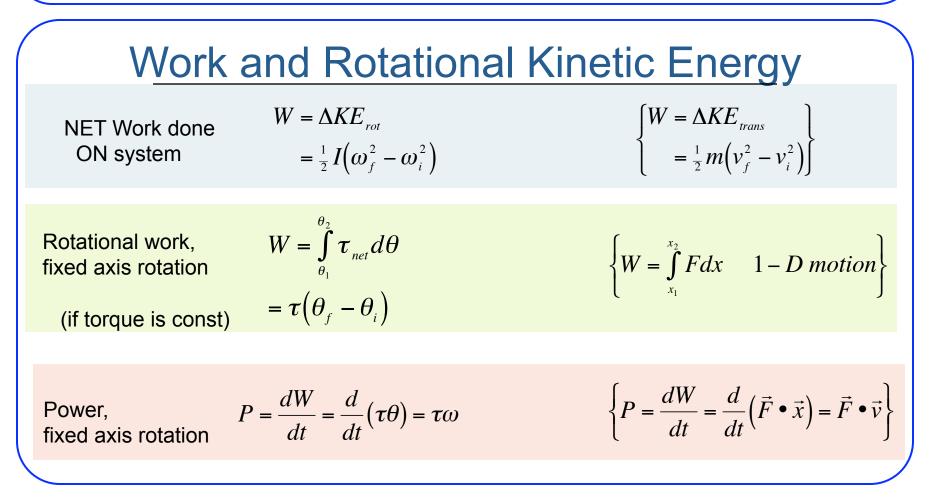


Halliday · Resnick · Walker FUNDAMENTALS OF PHYSICS 8e

<image><image>

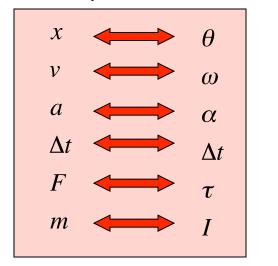
Quick Review: Newton's 2nd law for rotation

$$\left\{\vec{F}_{net} = \sum \vec{F}_i = m\vec{a}\right\} \qquad \vec{\tau}_{net} = \sum \vec{\tau}_i = \vec{r} \times \vec{F} = \vec{r} \times m\vec{a} = m\vec{r} \times (\vec{r} \times \vec{a}) = I\vec{a}$$



Quick Review: Rotational Work and Energy

We can compare linear variables with rotational variables

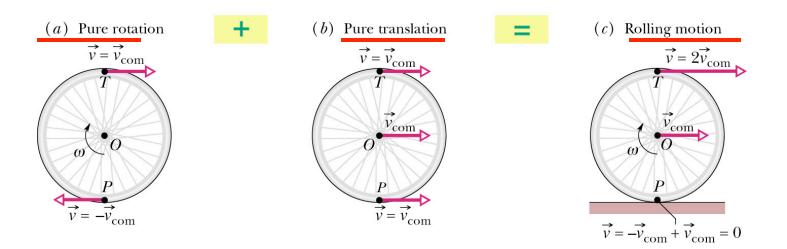


$$s = r\theta$$
$$v_T = r\omega$$
$$a_T = r\alpha$$

The same can be done for work and energy:

For translational systems For rotational systems $W = F \cdot x$ $KE = \frac{1}{2}mv^2$ $KE = \frac{1}{2}I\omega^2$

Quick Review: Rolling

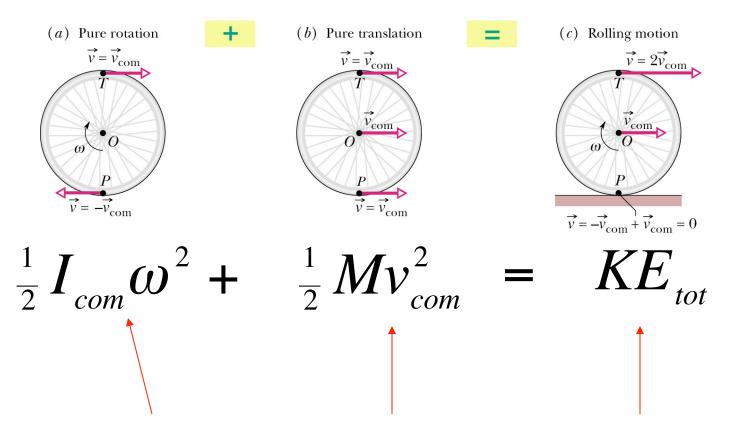


All points on wheel move with same ω . All points on outer rim move with same linear <u>speed</u> v = v_{com}. $\vec{v} = \vec{\omega} \times \vec{r}$ All points on wheel move to the right with same linear velocity v_{com} as center of wheel

Combination of "pure rotation" and "pure translation"

Note at point P: vector sum of velocity = 0 at point T: vector sum of velocity = $2v_{com}$ (point of stationary contact)
(top moves twice as fast as com)

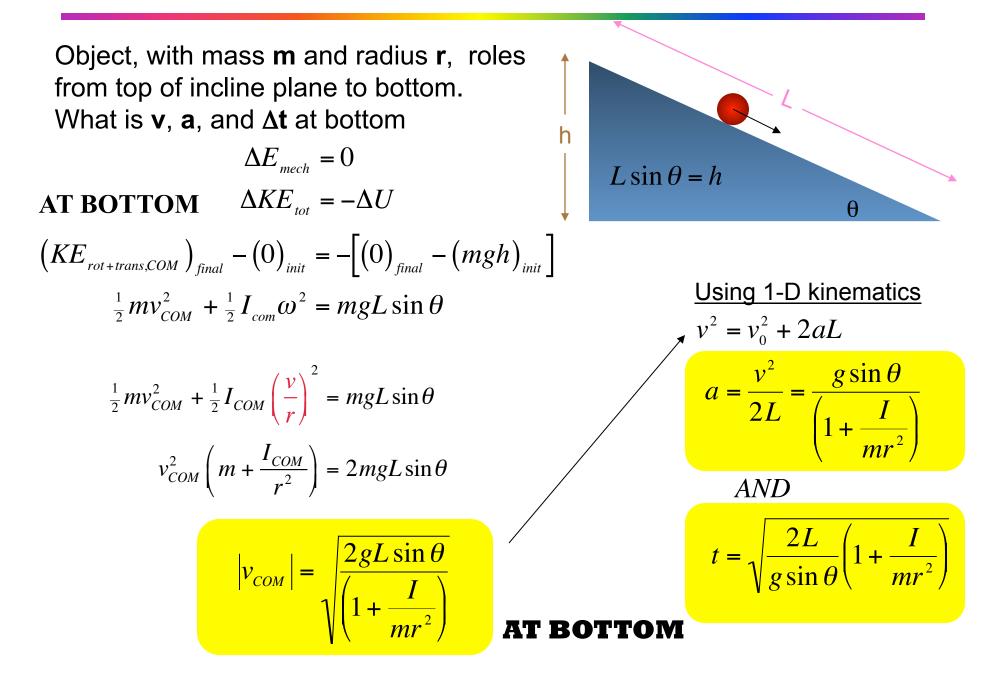
Quick Review: Kinetic Energy of Rolling



Note: rotation about COM and translation of COM combine for total KE

Remember: v_{com}=∞r

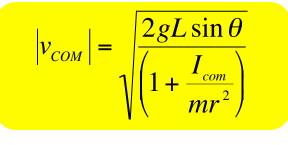
Example: Rolling down a ramp with no friction



Compare Different Objects

Assuming same work done (same change in U), objects with larger rotational inertial have larger KE_{rot} and during rolling, their KE_{trans} is smaller.

$$KE_{tot} = KE_{trans} + KE_{rot} = KE_{trans} \left(1 + \frac{I_{com}}{mr^2}\right)$$

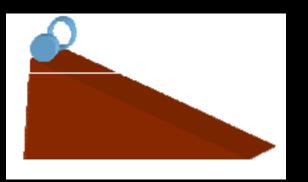


Roll a hoop, disk, and solid sphere down a ramp - what wins?

		Rot Object	ational Inertia, I _{com}	Fraction of Energy Translation	<u>y in</u> Rota	tion
	Moment of inertia large → small	Ноор	$1mr^2$	0.5	0.5	slowest
		Disk	$\frac{1}{2}mr^2$	0.67	0.33	$\Delta t_{bottom} = \sqrt{\frac{2L}{g\sin\theta} \left(1 + \frac{I}{mr^2}\right)}$
		Sphere	$\frac{2}{5}mr^2$	0.71	0.29	
sliding block (no friction)		•	0	1	0	fastest

Question

A ring and a solid disc, both with radius *r* and mass *m*, are released from rest at the top of a ramp. Which one gets to the bottom first?



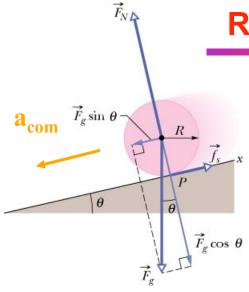
1. Solid disc

- 2. Ring (hoop)
- 3. both reach bottom at same time

Two solid disks of equal mass, but different radii, are released from rest at the top of a ramp. Which one arrives at the bottom first?

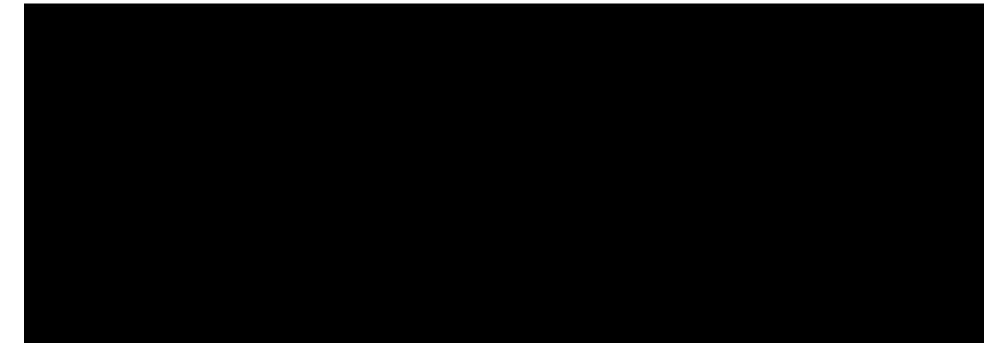
- 1. The smaller radius disk.
- 2. The larger radius disk.
- 3. Both arrive at the same time.

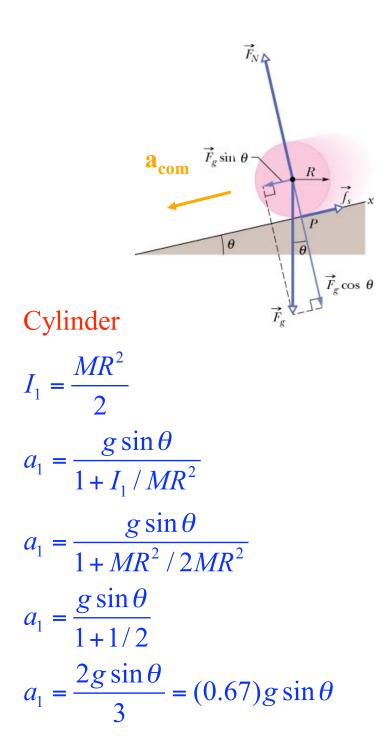
The equation for the speed of the a disk at the bottom of the ramp is $\sqrt{\frac{4}{3}gl\sin\theta}$ Notice, it does not depend on the radius or the mass of the disk!! Using 1-D kinematics $v^{2} = v_{0}^{2} + 2aL$ $a = \frac{v^{2}}{2L} = \frac{g\sin\theta}{\left(1 + \frac{I}{mr^{2}}\right)}$ AND $t = \sqrt{\frac{2L}{g\sin\theta}\left(1 + \frac{I}{mr^{2}}\right)}$

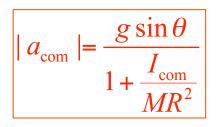


Rolling Down a Ramp with a Frictional Force

Consider a round uniform body of mass M and radius Rrolling down an inclined plane of angle θ . We will calculate the acceleration a_{com} of the center of mass along the *x*-axis using Newton's second law for the translational and rotational motion.







Hoop

$$I_{2} = MR^{2}$$

$$a_{2} = \frac{g \sin \theta}{1 + I_{2} / MR^{2}}$$

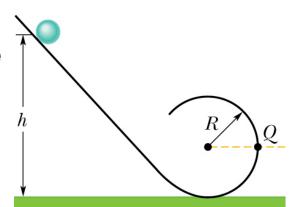
$$a_{2} = \frac{g \sin \theta}{1 + MR^{2} / MR^{2}}$$

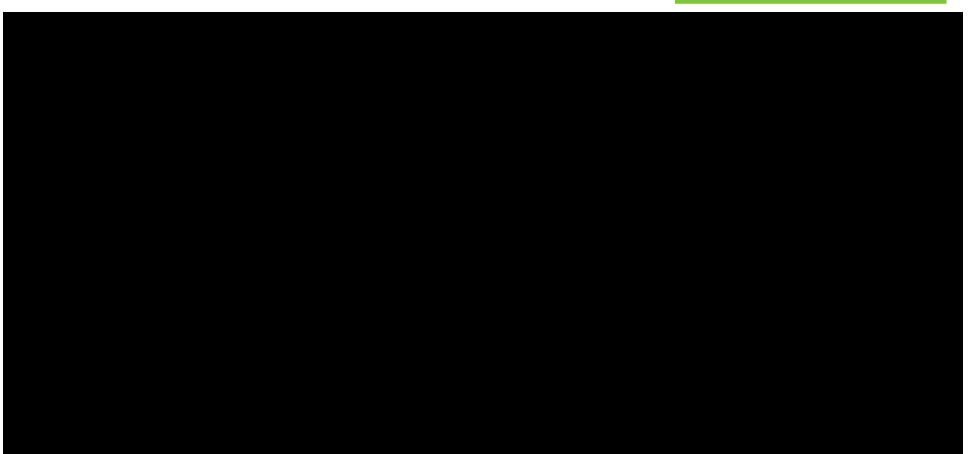
$$a_{2} = \frac{g \sin \theta}{1 + 1}$$

$$a_{2} = \frac{g \sin \theta}{2} = (0.5)g \sin \theta$$

Sample Problem

A solid cylinder starts from rest at the upper end of the track as shown. What is the angular speed of the cylinder about its center when it is at the top of the loop?

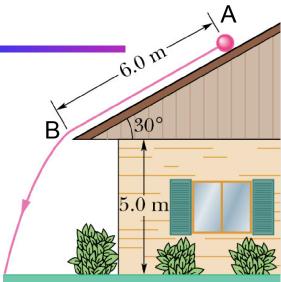


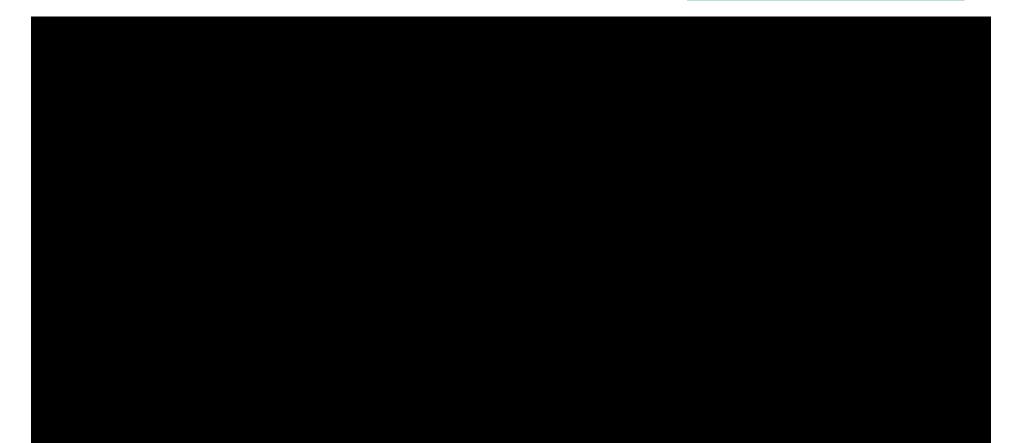


Sample Problem #2

A solid cylinder of radius 10 cm and mass 12 kg starts from rest and rolls without slipping a distance of 6 m down a house roof that is inclined at 30°.

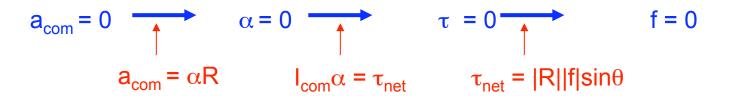
Where does it hit?



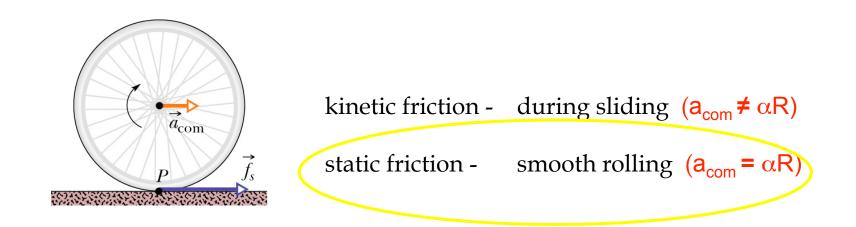


Forces of Rolling

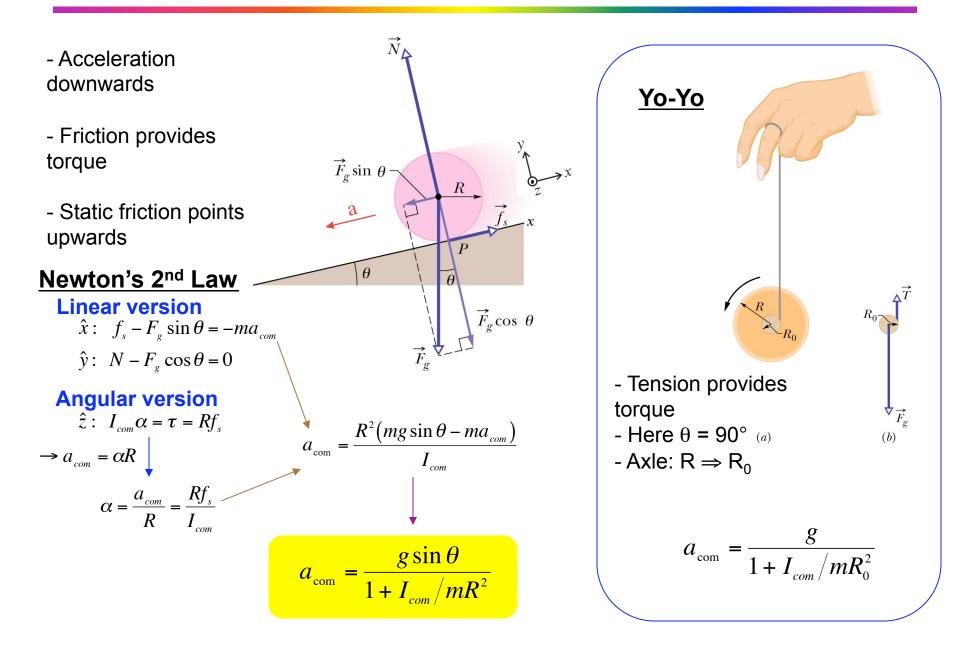
1) If object is rolling with $a_{com}=0$ (i.e. no net forces), then $v_{com}=\omega R = constant$ (smooth roll) ...**if constant speed**, it has no tendency to slide at point of contact - **no frictional forces**



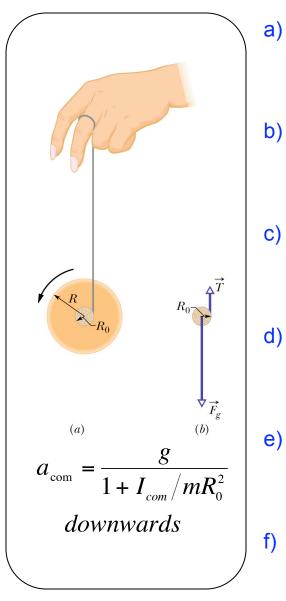
If object is rolling with a_{com}≠0 (i.e. there are net forces) and <u>no slipping</u> occurs, then α ≠ 0 ⇒ τ ≠ 0
 ... static friction needed to supply torque !



Rolling Down a Ramp: Acceleration by f_s



Problem



- A yo-yo has a rotational inertia of I_{com} and mass of m. Its axle radius is R_0 and string's length is h. The yo-yo is thrown so that its initial speed down the string is v_0 .
- a) How long does it take to reach the end of the string?
 - 1-D kinematics given a_{com}

 $-h = \Delta y = -v_0 t - \frac{1}{2}a_{com}t^2 \implies solve for t (quadradic equation)$

b) As it reaches the end of the string, what is its total KE? Conservation of mechanical energy

$$KE_{f} = KE_{i} + U = \frac{1}{2}mv_{com,0}^{2} + \frac{1}{2}I_{com}\left(\frac{v_{com,0}}{R_{0}}\right)^{2} + mgh$$

c) As it reaches the end of the string, what is its linear speed?
 1-D kinematics given a_{com}

$$-|v_{com}| = -v_0 - a_{com}t \implies solve for |v_{com}|$$

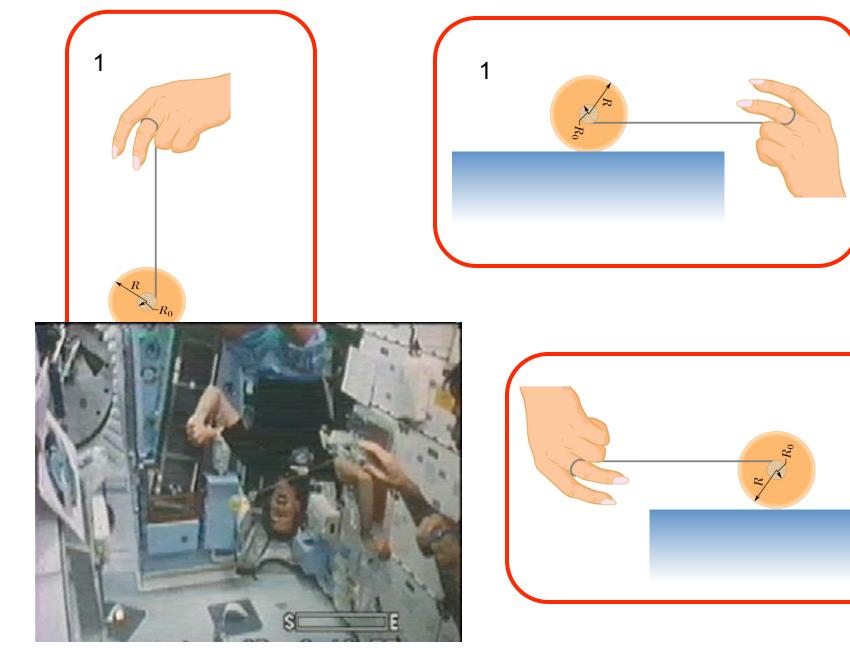
As it reaches the end of the string, what is its translational KE? Knowing $|v_{com}|$

$$KE_{trans} = \frac{1}{2} m v_{com}^2$$

- As it reaches the end of the string, what is its angular speed? Knowing $|v_{com}|$ $\omega = \frac{v_{com}}{R}$
 - As it reaches the end of the string, what is its rotational KE? Two ways: $VE = \frac{1}{4} L = \omega^2$ or VE = V = VE

vo ways:
$$KE_{rot} = \frac{1}{2}I_{com}\omega^2$$
 or $KE_{rot} = K_{Ef,tot} - KE_{trans}$

Which way will it roll??



3

Problem 11-13

NON-smooth rolling motion

A bowler throws a bowling ball of radius **R** along a lane. The ball slides on the lane, with initial speed $v_{com,0}$ and initial angular speed $\omega_0 = 0$. The coefficient of kinetic friction between the ball and the lane is μ_k . The kinetic frictional force f_k acting on the ball while producing a torque that causes an angular acceleration of the ball. When the speed v_{com} has decreased enough and the angular speed ω has increased enough, the ball stops sliding and then rolls smoothly.

 $\vec{v}_{\rm com}$

 $v_{com} = \frac{v_0}{\left(1 + I/mR^2\right)}$

- [After it stops sliding] What is the v_{com} in terms of ω ? *a*)
- Smooth rolling means $v_{com} = R\omega$ During the sliding, what is the ball's <u>linear</u> acceleration? *b*)

From 2^{nd} law: \hat{x} : $-f_k = ma_{com}$ But $f_k = \mu_k N$ So $a_{com} = -f_k/m$ (*linear*) $\hat{y}: N - mg = 0$ $= -\mu_k g$ $=\mu_{\mu}mg$

During the sliding, what is the ball's <u>angular</u> acceleration? c) $f_k = \mu_k N$ S_O $I\alpha = Rf_k = R(\mu_k mg)$ From 2^{nd} law: $\vec{\tau} = Rf_{\nu}(-\hat{z})$ But $=\mu_k mg$ $\alpha = \frac{R\mu_k mg}{I}$ (angular) $I\alpha(-\hat{z}) = \vec{\tau} = Rf_{\mu}(-\hat{z})$

d)What is the speed of the ball when smooth rolling begins?

 $v_{com} = R\omega ? \qquad v_{com} = v_0 + a_{com}t \qquad v_{com} = v_0 - \mu_k gt \qquad v_{com} = v_0 - \mu_k g \left(\frac{I(\frac{v_{com}}{R})}{R\mu_k mg}\right)$ From kinematics: $\omega = \omega_0 + \alpha t \qquad t = \frac{\omega}{\alpha} = \frac{I\omega}{R\mu_k mg}$ When does $v_{com} = R\omega$?

How long does the ball slide? *e*)

$$t = \frac{v_0 - v_{com}}{\mu_k g}$$