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 
τ net =

 
τ i∑ = r

→

×F
→

= r
→

×m a
→

= m r
→

× (r
→

×α
→

)= I  α 
  

€ 

 
F net =

 
F i∑ = m a { }

€ 

W = ΔKEtrans

= 1
2m vf

2 − vi
2( )

 
 
 

 
 
 

€ 

W = ΔKErot

= 1
2 I ω f

2 −ω i
2( )

NET Work done  
  ON system 

€ 

W = Fdx     1−D motion
x1

x2

∫
 
 
 

 
 
 

€ 

W = τ net dθ
θ1

θ 2

∫

= τ θ f −θ i( )

Rotational work, 
fixed axis rotation 

   (if torque is const) 

  

€ 

P =
dW
dt

=
d
dt
 
F •  x ( ) =

 
F •  v 

 
 
 

 
 
 

€ 

P =
dW
dt

=
d
dt

τθ( ) = τωPower, 
fixed axis rotation 

Work and Rotational Kinetic Energy 



 

We can compare linear variables with rotational variables 

€ 

x
v
a
Δt
F
m

€ 

θ

ω

α

Δt
τ

I

€ 

s = rθ
vT = rω
aT = rα

The same can be done for work and energy: 

€ 

W = F ⋅ x

KE =
1
2
mv 2

For translational systems 

€ 

W = τ ⋅θ

KE =
1
2
Iω 2

For rotational systems 



 

 All points on wheel 
move to the right with same 
linear velocity vcom as center 
of wheel 

Note at point P:  vector sum of velocity = 0   (point of stationary contact) 
         at point T:  vector sum of velocity = 2vcom  (top moves twice as fast as com) 

 Combination of “pure 
rotation” and “pure 
translation” 

 All points on wheel move 
with same ω.  All points on 
outer rim move with same 
linear speed v = vcom.  

  

€ 

 v =  ω ×
 r 



 

€ 

1
2 Icomω

2

€ 

+   1
2 Mvcom

2

€ 

=    KEtot

Note: rotation about COM and translation of COM combine for total KE 

Remember:   vcom=ωr  



Example: Rolling down a ramp with no fric6on 

h 

θ 

€ 

L sinθ = h

Object, with mass m and radius r,  roles 
from top of incline plane to bottom.  
What is v, a, and Δt at bottom 

€ 

KErot+ trans,COM( ) final
− 0( ) init = − 0( ) final

− mgh( ) init[ ]
1
2mvCOM

2 + 1
2 Icomω

2 = mgL sinθ

1
2 mvCOM

2 + 1
2 ICOM

v
r






2

= mgL sinθ

vCOM
2 m +

ICOM
r2






= 2mgL sinθ

€ 

vCOM =
2gL sinθ

1+
I

mr 2
 

 
 

 

 
 

Using 1-D kinematics 

€ 

v2 = v0
2 + 2aL

a =
v2

2L
=

gsinθ

1+
I
mr 2

 

 
 

 

 
 

AND

t =
2L

gsinθ
1+

I
mr 2

 

 
 

 

 
 

€ 

ΔEmech = 0
ΔKEtot = −ΔUAT BOTTOM 

AT BOTTOM 



Compare Different Objects 

€ 

vCOM =
2gL sinθ

1+
Icom
mr 2

 

 
 

 

 
 

Assuming same work done (same change in U), 
objects with larger rotational inertial have larger 
KErot and during rolling, their KEtrans is smaller. 

€ 

KEtot = KEtrans + KErot = KEtrans 1+
Icom
mr 2

 

 
 

 

 
 

Roll a hoop, disk, and solid sphere down a ramp - what wins? 

Hoop 

Disk 

Sphere 

sliding block  
(no friction) 

€ 

1mr 2

1
2mr

2

2
5mr

2

0

     Rotational              Fraction of Energy in 
Object     Inertia, Icom             Translation    Rotation 

M
om

ent of inertia 
   large →

 sm
all 

0.5          0.5

0.67                 0.33 

0.71                 0.29 

1          0 

slowest 

fastest 
€ 

Δtbottom =
2L

gsinθ
1+

I
mr 2

 

 
 

 

 
 



A ring and a solid disc, both with radius r and mass m, are 
released from rest at the top of a ramp. Which one gets to 
the bottom first? 

1.    Solid disc 
2.   Ring (hoop) 
3.   both reach bo9om at 

same ;me 

 Question




Two solid disks of equal mass, but different radii, are 
released from rest at the top of a ramp. Which one arrives 
at the bottom first? 

1.    The smaller radius disk. 
2.   The larger radius disk. 
3.   Both arrive at the same time. 

 Question #2


The equation for the speed of the a disk at the bottom of 
the ramp is       

Notice, it does not depend on the radius or the mass of 
the disk!!  

4
3 gl sinθ

Using 1-D kinematics 

€ 

v2 = v0
2 + 2aL

a =
v2

2L
=

gsinθ

1+
I
mr 2

 

 
 

 

 
 

AND

t =
2L

gsinθ
1+

I
mr 2

 

 
 

 

 
 



acom 

   

Rolling Down a Ramp
Consider a round uniform body of mass M  and radius R 
rolling down an inclined plane of angle θ.  We will
calculate the acceleration acom  of the center of mass 
along the x-axis using Newton's second law for the 
translational and rotational motion.

  

Newton's second law for motion along the x-axis:  fs − Mg sinθ = Macom   (eq. 1)
Newton's second law for rotation about the center of mass:  τ = Rfs = Icomα

α = −
acom

R
   We substitute α  in the second equation and get Rfs = − Icom

acom

R
→

fs = − Icom

acom

R2     (eq. 2).    We substitute  fs  from equation 2 into equation 1→

− Icom

acom

R2  − Mg sinθ = Macom
com

com
2

sin

1

ga I
MR

θ
= −

+

Rolling Down a Ramp with a Frictional Force 



acom 

2
2

1 2

1 22 2
1 2

1 2

                                             
2

sin sin                                   
1 /

Cylinder                                    

1 /
sin

1

       

/

     Hoo

2

p
MRI I MR

g ga a
I MR I MR
ga
MR

θ θ

θ

= =

= =
+ +

=
+ 22 2 2

1 2

1 2

sin                            
1 /

sin sin                                           
1 1/ 2 1 1
2 sin sin(0.67) sin                 (0.5) sin

3 2
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g ga a

g ga g a g

θ

θ θ

θ θ
θ θ

=
+

= =
+ +

= = = =

com
com

2

sin| |
1

ga I
MR

θ
=

+



Sample Problem  
A solid cylinder starts from rest at the upper end of the 
track as shown.  What is the angular speed of the 
cylinder about its center when it is at the top of the 
loop? 



Sample Problem #2 
A solid cylinder of radius 10 cm and mass 12 kg starts 
from rest and rolls without slipping a distance of 6 m 
down a house roof that is inclined at 30º. 

Where does it hit? 

A 

B 



Forces of Rolling 

1)  If object is rolling with acom=0 (i.e. no net forces), then vcom=ωR = constant (smooth roll) 

…if constant speed, it has no tendency to slide at point of contact - no frictional forces 

… static friction needed to supply torque ! 

2)  If object is rolling with acom≠ 0 (i.e. there are net forces) and no slipping occurs, 
      then α ≠ 0   ⇒  τ ≠ 0  

kinetic friction -  during sliding  (acom ≠ αR) 

static friction -  smooth rolling  (acom = αR) 

acom = 0                   α = 0                      τ  = 0                       f = 0 

acom = αR Icomα = τnet τnet = |R||f|sinθ 



Rolling Down a Ramp: Accelera2on by fs  

€ 

ˆ x :    fs − Fg sinθ = −macom

ˆ y :   N − Fg cosθ = 0

ˆ z :   Icomα = τ = Rfs

€ 

→ acom =αR 

€ 

 α =
acom

R
=
Rfs
Icom
€ 

   acom =
R2 mgsinθ −macom( )

Icom

€ 

   acom =
gsinθ

1+ Icom mR2

Newton’s 2nd Law 
   Linear version 

   Angular version 

- Acceleration 
downwards 

- Friction provides 
torque 

- Static friction points 
upwards 

Yo-Yo 

- Tension provides 
torque 
- Here θ = 90° 
- Axle: R ⇒ R0 

€ 

   acom =
g

1+ Icom mR0
2



A yo-yo has a rotational inertia of Icom and mass of m.  Its axle 
radius is R0 and string’s length is h.  The yo-yo is thrown so 
that its initial speed down the string is v0. 

a)  How long does it take to reach the end of the string? 

b)  As it reaches the end of the string, what is its total KE? 

c)  As it reaches the end of the string, what is its linear speed? 

d)  As it reaches the end of the string, what is its translational KE? 

e)  As it reaches the end of the string, what is its angular speed? 

f)  As it reaches the end of the string, what is its rotational KE? 

Problem 

€ 

   acom =
g

1+ Icom mR0
2

downwards

€ 

−h = Δy = −v0t −
1
2 acom t

2 ⇒  solve for t (quadradic equation)
1-D kinematics given acom 

Conservation of mechanical energy 

€ 

KE f = KEi +U = 1
2mvcom,0

2 + 1
2 Icom

vcom,0
R0

 

 
 

 

 
 

2

+ mgh

1-D kinematics given acom 

€ 

−vcom = −v0 − acom t ⇒  solve for vcom

Knowing |vcom| 

€ 

KEtrans =
1
2
mvcom

2

€ 

ω =
vcom
R

Knowing |vcom| 

Two ways: 

€ 

KErot =
1
2
Icomω

2   or   KErot = KEf ,tot − KEtrans



Which way will it roll??   

1 1 

3 



A bowler throws a bowling ball of radius R along a lane.  The ball slides on the lane, with initial speed 
vcom,0 and initial angular speed ω0 = 0.  The coefficient of kinetic friction between the ball and the 
lane is µk.  The kinetic frictional force fk acting on the ball while producing a torque that causes an 
angular acceleration of the ball.  When the speed vcom has decreased enough and the angular speed 
ω  has increased enough, the ball stops sliding and then rolls smoothly.


a)  [After it stops sliding] What is the vcom in terms of ω ?


b)  During the sliding, what is the ball’s linear acceleration?


c)  During the sliding, what is the ball’s angular acceleration?


d) 
What is the speed of the ball when smooth rolling begins?


e) 
 How long does the ball slide? 


Problem 11‐13   
NON-smooth rolling motion


Smooth rolling means   vcom =Rω 


€ 

ˆ x :   − fk = macom

ˆ y :   N −mg = 0
From 2nd law:

  (linear)           


But            


€ 

fk = µ k N
= µ kmg

€ 

acom = − fk m
= −µ kg

So            


  

€ 

 
τ = Rfk (− ˆ z )
Iα(− ˆ z ) =

 
τ = Rfk (− ˆ z )

From 2nd law:

   (angular)           


But            


€ 

fk = µ k N
= µ kmg

So            


€ 

Iα = Rfk = R µ kmg( )

α = Rµ kmg
I

When does vcom =Rω ?


€ 

vcom = v0 + acom t
ω =ω 0 +αtFrom kinematics:           


€ 

vcom = v0 −µ kgt

t =ωα = Iω Rµ kmg

€ 

vcom = v0 −µ kg
I vcom R
 
 
  

 
 

Rµ kmg

 

 

 
 
 

 

 

 
 
 

vcom =
v0

1+ I mR2( )

€ 

t =
v0 − vcom

µ kg


