A summing up

When placed within abstract deductive mathematical structures, impossibility statements are simply definitions, axioms, or theorems, as the case may be. If theorems, then assessments of their validity are arrived at by the standard processes and criteria of mathematical validation. These include an examination of the intuitive, deductive, and interactive bases of the theorems.

The history of mathematics displays a long and vitally important record of impossibilities being broken by instituting structural changes.

Meaning in mathematics derives not from naked symbols but from the relationship between these symbols and the exterior world. This relationship is established through the mediation of the mathematical community. Insofar as structures are added to primitive ideas to make them precise, flexibility is lost in the process.

In a number of ways, then, the closer one comes to an assertion of an absolute "no," the less is the meaning that can be assigned to this "no."

References


Fermat's Last Theorem

Mssr. Fermat—what have you done?
Your simple conjecture has everyone
Churning out proofs,
Which are nothing but goofs!
Could it be that your statement's an erudite spoof?
A marginal hoax
That you've played on us folk?
But then you're really not known for your practical jokes.
Or is it then true
That you knew what to do
When n was an integer greater than two?
Oh then why can't we find
That same proof... are we blind?
You must be reproved, for I'm losing my mind.

—JONATHAN P. DOWLING
1600 Hillside Road
Boulder, CO 80302